Information and Communication Technology Tools for Sustainable Agriculture

Mini Symposium

Professor Attachai Jintrawet, Chiang Mai University, Thailand &

Gerrit Hoogenboom, the University of Georgia, USA

Mini Symposium

 Forum for dialogue among researchers in the field of agriculture and systems applications

ICASA's Role in Sustainable Agriculture in the 21st Century

Gerrit Hoogenboom, University of Georgia, USA
J.W. White, USDA-ARS, USA
J.W. Jones, University of Florida, USA
G.Y. Tsuji, University of Hawaii, USA
Attachai Jintrawet, Chiang Mai University, Thailand

What is Agriculture?

- Food (for human consumption)
- Feed (for livestock consumption)
- Fiber (for clothing and other uses)
- Fuel (for energy)

Systems Approach

Problem Solving Research for Understanding Control/ Model Management/ Development **Decision Support** Design Research Model Application/ Increased Prediction Analysis Understanding **Test Predictions**

ICASA's Role in Sustainable Agriculture in the 21st Century

Gerrit Hoogenboom, University of Georgia, USA
J.W. White, USDA-ARS, USA
J.W. Jones, University of Florida, USA
G.Y. Tsuji, University of Hawaii, USA
Attachai Jintrawet, Chiang Mai University, Thailand

Issues for Agriculture in the 21st Century

- Increased demands for agricultural products
- Increased pressures on natural resources, especially water
- Climate related risks
- Rapid changes in technology, ...
- Information needed for decision making
- Gap between information needed and that created by traditional agronomic research
- High and increasing costs of field experimentation
- Integration of knowledge is needed

Spatial and Temporal Issues

• The agricultural system is a **complex** system that includes many interactions between biotic and abiotic factors

- Abiotic factors = Non-Living
 - Weather/climate
 - Soil properties
 - Crop management
 - Crop and variety selection
 - Planting date and spacing
 - Inputs, including irrigation and fertilizer

- Biotic factors
 - Pests and diseases
 - Weeds
 - Soil fauna

- Socio-economic factors
 - Prices
 - Policies
 - Cultural settings
 - Human decision making

 The agricultural system is a complex system that includes many interactions between biotic and abiotic factors

Management

 Some of these factors can be modified by farmer interactions and intervention, while others are controlled by nature.

Systems Approach

- Traditional agronomic approach:
 Experimental trial and error
- Systems Approach
 - Computer models
 - Experimental data
- Understand → Predict → Control & Manage
 (H. Nix, 1983)

What is a model ?

- A model is a mathematical representation of a real world system.
- The use of models is very common in many disciplines, including the airplane industry, automobile industry, civil eng., industrial eng., chemical engineering, etc.
- The use of models in agricultural sciences traditionally has not been very common.

Crop Simulation Models

 Crop simulation models integrate the current state-of-the art scientific knowledge from many different disciplines, including crop physiology, plant breeding, agronomy, agrometeorology, soil physics, soil chemistry, soil fertility, plant pathology, entomology, economics and many others.

Agricultural Models

- Crop simulation models in general calculate or predict *crop growth and yield* as a function of:
 - Genetics
 - Weather conditions
 - Soil conditions
 - Crop management

Where/When Crop Modeling Started: The Dutch & US Cotton Researchers

- Started in late 1960's
- Wanted method to predict crop growth and yield to better design management systems and to quantify effects of weather, risk
- C. T. de Wit (The Netherlands)
- Bill Duncan, Herb Stapleton, Jerry Lambert, Don Baker, Bob Peart, Bruce Curry (USA)
- Evolved into Dutch models (SUCROS) and US Cotton Models
- Also, created crop modeling community, which still functions today (Biological System Simulation Group)

Evolution of Several Major Families of Crop Models Time, Years----- \rightarrow Groups 1990 2000 1970 1980 Dutch SUCROSE Family of Models (ORYZA, etc.), Various Crop------→ Dutch & US Initiative COTON French COTMOD – SIMCOT – GOSSYM – GOSSYM-COMAX @ **USDA-ARS** GLYCIM------→ SOYMOD ----- @ **Ohio State University** SOYGRO/PNUTGRO -**CROPGRO** Florida, Iowa, DSSAT ----- CSM ---→ Michigan, Georgia, Hawaii, Canada, **Generic CERES CERES-Wheat/Maize** Arizona, ... APSIM + -----→ CSIRO, DPI, ... (Australia)

Current Groups (with strong crop components)

- APSRU (Australia)
- STICS (France)
- SUCROS (Netherlands)
- DSSAT (USA, Canada, others ...)
- DEMETER (Germany, Max Planks Institute)

Other Significant Crop Modeling Efforts

- EPIC and ALMANAC (USDA, Temple, Texas. J. Williams, C. A. Jones et al.)
- CROPSYST (Washington State University. C. Stockle, M. Donatelli)
- RZWQM (Colorado, ARS)
- Many others who are affiliated with one or more of the above groups, i.e., in Canada, Australia, USA, UK, Denmark, Germany, Argentina, Spain, Italy, Japan, Thailand,

Acronyms

IBSNAT

 International Benchmark Sites Network for Agrotechnology Transfer

• ICASA

 International Consortium for Agricultural Systems Applications

• DSSAT

 Decision Support System for Agrotechnology Transfer

IBSNAT Project

- Funded by the U.S. Agency for International Development
- 1982 1993
 - No continuation of financial support since 1993
- University of Hawaii
 - Michigan State University, University of Florida, Int. Fertilizer Development Center

IBSNAT - Approach

- To provide support to developing countries based on a systems analysis approach
- To use computer models and data in agricultural sciences in contrast to a traditional agronomic approach (trial and error)
- Understanding → Prediction → Control & Manage (H. Nix, 1983)

IBSNAT - Outcomes

- A global network of:
 - Crop model developers
 - Crop model users
- A computerized product for decision support
 DSSAT
- Data standards for model applications
- Data sets for model evaluations across many environments

International Consortium for Agricultural Systems Applications

- Combined former IBSNAT with the Netherlands Systems Science Effort
- Started in December 1993 in Thailand
- Board of Directors
- Global Network of participating scientists & institutions
- Joint activities (workshops, meetings, etc.)
- www.ICASA.net

ICASA Vision

- Broad acceptance and application of systems research in agricultural sciences and resource management.
- Wide participation of researchers in the development and application of compatible models, tools, and data, using modular approaches.
- Enhanced quality of agricultural systems science products, tools, and information.

ICASA Membership

- Initial Phase (1993-1996)
 - IBSNAT + Wageningen Agric. Univ. Group
- Expansion (1997-2002)
 - Added APSRU and Indian Systems Groups
- Widespread Participation (2003)

- Open invitation to participate

- Membership form at <u>www.ICASA.net</u>
 - No dues
 - Benefits and contributions
- No financial support

ICASA Mode of Operation

- Participatory (design, development, application)
- No central funding
- Share tools, code, data, etc.
- Members give and receive
- Web-based system

ICASA Activities

- Training and workshops
- Standards, protocols, modularity
- Data archiving and data exchange
- Development of toolkits
- Projects
- Conferences and symposia
- Publications and dissemination

Science-Based Tools

» Biophysical Crop-Soil-Weather-Management Models

Data preparation and analysis tools and application packages and programs

Crop Simulation Models

- Based on understanding of plants, soil, weather and management interactions
 - Morphological and phenological development
 - Photosynthesis, respiration, partitioning and growth
 - Root water and nitrogen uptake
 - Stress effects on growth processes
- Predict growth, yield, timing (Outputs)

Crop Simulation Models

- Require information (Inputs)
 - Field and soil characteristics
 - Weather (daily)
 - Cultivar characteristics
 - Management
- Can be used to perform "what-if" experiments

Decision Support System for Agrotechnology Transfer

• DSSAT:

A single software package that facilitates the application of crop simulation models in research, teaching, outreach, service and decision making.

A Decision Support System for Agrotechnology Transfer

DSSAT - software

• A software program that includes:

Crop simulation models

- CERES, CROPGRO, SUBSTOR, CANEGRO, CROPSIM, AROID, OILCROP, and others
- Utilities and tools for data handing
 - Experimental, soil, weather, economics
- Application programs
 - Seasonal, crop rotational, and spatial analysis

DSSAT - components

- A simple shell to access all programs, tools and utilities
- 15+ programs, utilities and tools
 - Mixture of languages, including Fortran, Visual Basic, Delphi, Excel, etc.
- Experimental, crop, weather, soil, pest, genotype and economic data files

DSSAT - operation

• Two key components:

A strict set of data standards, file formats, and file naming conventions

A standard protocol for communication between individual modules and components

DSSAT - distribution

- DSSAT v2.1 1989 589 • DSSAT v3.0 1994 433 • DSSAT v3.1 1996 138 • DSSAT v3.5 1998 429+ DSSAT v4B 2002 Workshop @ **UGA** • DSSAT v4C 2003 Thailand workshop DSSAT V4.0 2004 Workshop @ UGA • DSSAT v4.02 2005 293+
- DSSAT v4.02 2006
- Workshop @ UGA
- Users in over than 90 countries

DSSAT Development Team

- University of Hawaii: Distribution
- University of Georgia: Coordination
- University of Florida
 - Jones & Boote
- Mississippi State University
 - Batchelor
- International Center for Soil Fertility and Agricultural Development (IFDC)
 - Wilkens, Singh and Bowen
- University of Guelph
 - Hunt
- Others:
 - USDA-ARS: J.W. White; CIAT: A. Gijsman

Linkage between experimental data and simulations

Model credibility and evaluationExperimental data needs

DSSAT Minimum Data Set

- Level 1 Operate crop simulation models
- Level 2 Evaluate model performance

- Calibrate, estimate parameters

Level 3 - Develop models (Maximum)

Standard files, formats designed, documented, and implemented in DSSAT and its crop models

Experimental Data

- "Golden child" of experimentalist
- Experimental data are under-utilized
- Experimental data "disappear" upon retirement or transfer of a scientist
- Many granting agencies now require sharing and public access of experimental data

ICASA Data Exchange

- Internet-based system:
 - www.ICASA.net
- Documenting, archiving and exchanging cropping system, experimental and/or weather datasets.
- Users can enter metadata that describe their datasets
 - Upload their dataset files
 - Edit their entries
 - Search for data using specific criteria
 - Browse metadata of datasets in the system, and
 - Download datasets from the system.

IDE Example Data

🔊 ICASA Data Exchange - Ne	etscape		_	Ð	
임 🛇 ICASA Data Exchange				Ð	
ICASA					
Home Page	HOME Experiment	Weather Supervisor	ICASA Data Exchange		
About ICASA OJoin ICASA	EXPERIMENT DATABASE		Search Enter Edit your entry Feedback Log off		
Board of Directors Meeting Minutes Events Calendar	OWNERS OF DATASET				
Proceedings Publications Data Standards	<u>Owner</u>	er (1) Jeffrey White - U.S. Water Conservation Laboratory, USDA-ARS - e-mail: JWhite@uswcl.ars.ag.gov			
Modular Models OModeling Tillage OCRYZA2000	EXPERIMENT INFORM	ATION			
DSSAT	<u>Years</u>	Start - End:	1986 - 1986		
Listserver	Country	Name (Code):	Colombia (CO)		
Tool Kit	Crops	Single Crop :	Dry Bean		
Data Exchange	Site	Name:	CIAT		
Summaries		City:	Palmira		
Links		State/Province:	Valle		
		Institution	Centro Internacional de Adricultura Tronical		
e-mail us:		Lat /Len / Elevation.			
		Lat / Lon / Elevation.	0.1		
icasa@icasa.net		Soll Texture:	Silt		
		Treatment Factor:	Variety Spacing		
		Experiment Type:	Single Season		

-IF 📲 🖆 //

IDE Meta Data

🕲 ICASA Data Exchange - Netscape						
📲 🛇 ICASA Data Exchange				X		
	DATA RECORDED					
	<u>Climate Da</u>	i <u>ta</u> Temperature:	N/A			
11		Rainfall:	N/A			
	Daily Weather Da	i <u>ta</u> Available Data:	Rainfall Temperature (Max/Min) Solar Radiation			
and the first		Location Measured:	At nearby station			
	<u>Data Record</u>	<u>ed</u> Management Inputs:	Planting Date Plant Density/Spacing Variety Irrigation Fertilizer			
		Measurement:	Phenology: Flowering Phenology: Maturity In-Season: Biomass In-Season: Grain/Seed/Tuber In-Season: LAI In-Season: Other End-of-Season: Biomass End-of-Season: Grain/Seed/Tuber End-of-Season: LAI End-of-Season: Other	=		
A SPA		Problems:	N/A			
	FILE & PUBLICATIO	ON INFORMATION				
and the second second	<u>File Informati</u>	on Data Format:	DSSAT v4.0			
	<u>Contact Informati</u>	on Data Access:	Download - experimental details - weather data - soil data - summary measured data			
🕑 🖂 🔏 🐶 🚺 Done			Samuely model and a data			

Who Uses DSSAT and its Models?

- Agricultural researchers
- Educators
- Extension Service and other farmer advisors
- Private sector
- Policy makers

Applications

- Diagnose problems (Yield Gap Analysis)
- Precision agriculture
 - Diagnose factors causing yield variations
 - Prescribe spatially variable management
- Water and irrigation management
- Soil fertility management
- Plant breeding and Genotype * Environment interactions
- Yield prediction for crop management

Applications

- Adaptive management using climate forecasts
- Climate variability
- Climate change
- Soil carbon sequestration
- Land use change analysis
- Targeting aid (Early Warning)
- Biofuel production

DSSAT Tools Under Development

- New Crops (Cotton, sugarcane, pasture, ...)
- Tillage module for DSSAT
- Improvements in various modules
 - Residue management, decomposition
 - Phosphorus
 - Soil water balance (runoff, evaporation, uptake by plants)
 - Crops

DSSAT Tools Under Development

- Updated ICASA data standards
- Data base management for data standards
- Climate prediction application tools
- Data assimilation (Integrating models and measurements to improve predictions)
- Tools to help estimate cultivar-specific paramaters
- Linkage between biotechnology and crop modeling (Gene-based modeling)
- Scaling up predictions (Linkage to GIS, etc.)
- Linkage with other models (Water quality & livestock)

Upcoming Crop Modeling Training Workshops

- Third DSSAT Training Workshop in Sub-Saharan Africa (Winter 2007)
- DSSAT Training Workshop for the Middle East (Jordan, Spring 2007)
- DSSAT Training Workshop for the Caribbean (Trinidad and Tobago 2007)
- DSSAT Training Workshop for Southeast Asia (Thailand 2007 [?])
- General Crop Modeling and DSSAT Training Workshop (University of Georgia, May 2008)

ICASA: www.ICASA.net

